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To clarify microstructural influences on the ceramic strength, a numerical analysis of the elastic stress
distribution around the crack tip for several crack lengths was conducted by using a finite element method
(FEM), in which each element was regarded as one grain in a ceramic polycrystal. In the analysis, the
anisotropy expected in actual grains was dealt with by randomly assigning different values to the rigidity
and the size of each element (i.e., each grain). The FEM results showed that the crack tip stress was
dependent on the grain rigidity but was hardly affected by the grain size. A microstructural modification
factor fM for the stress intensity factor was newly introduced to reflect microstructural influences on
ceramic strength. The factor fM was defined as the ratio of the crack tip stress obtained by the FEM
analysis to the K-based stress. Statistical aspects of fM were investigated by generating virtual materials
with different combinations of grain rigidity and size. When the fM distribution was fitted to the two-
parameter Weibull distribution function, it was clarified that the distribution shifted toward a lower side
with increasing the crack length. The R-curve expressed by an exponential form was applied so that the
grain bridging effect in ceramics could be included in the analysis of the strength depending on crack
length. It was revealed that the estimated scatter band in the relation of the strength versus the crack
length represented the central trend of dispersed experimental results.
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1. Introduction

It is generally recognized that the brittle fracture of engi-
neering ceramics is dominated by inherent flaws, which are
generated during manufacturing. The strength evaluation
method based on linear elastic fracture mechanics is usually
applied to such a fracture problem. However, when the con-
stant fracture toughness criterion for long cracks is adopted, the
strength estimated from the size of the flaw, which is identified
as a fracture origin on a fracture surface, is found to be lower
than the actual strength observed experimentally.[1-8] There is a
possibility that the fracture criterion based on the stress inten-
sity factor K, which is effective for cracks with the size enough
larger than material microstructure sizes, cannot be directly
applied to the fracture originating from the flaw with a micro-
structure size. Moreover, ceramic materials expected to be of
use in engineering ordinarily have polycrystalline structures,
which are composed of microscopic grains with individually
distinct characteristics such as crystallographic orientation,
geometric shape, and size. This implies that various properties
of individual grains should be also taken into account as mi-
crostructural factors in the strength analysis when the defect is
not very large compared with the grain structure. Conse-
quently, the microstructural influences on ceramic strength

should be adequately reflected in the K-based criterion by in-
vestigating detailed stress distribution on the stress field in
grains around the crack tip.

In this work, the stress distribution around the crack tip is
first numerically analyzed by using a finite element method. In
the analysis, the anisotropy appearing in individual grains with
distinct crystallographic directions is replaced with the varia-
tion of the grain rigidity, and the difference of grain size is
dealt with by deforming the shape and size of each element in
a divided mesh. A microstructural modification factor for the
stress intensity factor K is proposed based on the numerical
results to take account of the microstructural influences ex-
pected in ceramics. Finally, considering the R-curve behavior
in cracking,[9,10] the strength distribution characteristics are
simulated to clarify the influences of microstructural modifi-
cation factors on the ceramic strength.

2. Modeling and Conditions in Finite Element
Analysis

The stress at the crack tip is the focus because this stress is
considered to have a direct correlation with the fracture. The
crack tip stress is affected by some microstructural factors such
as grain size and crystallographic anisotropy of grains around
the crack tip. In this analysis, especially, the variations in the
grain size and the grain rigidity are examined as dominant
microstructural factors.

2.1 Analytical Model

Consider a crack with a total length of 2a located at the
center of a plate (Fig. 1). A finite element code, MARC
(MARC Analysis Research, Palo Alto, CA) is used for the
analysis of the elastic stress distribution around the tip of the
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opening mode crack. In this analysis, one element is assumed
as one grain constituting a polycrystalline microstructure, and
the half part of the plate is analyzed in consideration of its
symmetry (Fig. 1). Although the two models depicted in Fig.
1(a) and (b) have been analyzed for the position of the element
at the crack tip (i.e., the crack tip grain), the results obtained
using the two models in Fig. 1 are found to be almost the same
as in a previous study.[11] Therefore, Model A in Fig. 1(a) is
applied to the following simulation.

In the following, an equivalent crack length[2] is introduced
to describe the crack length by the formulation including the
geometrical effect. Using the half crack length a, an applied
stress �a, and its related stress intensity factor K, the equivalent
crack length l is defined as:

l = a M2 = ��K

�a
�2

(Eq 1)

In the present model, the stress intensity factor K is evaluated
by considering the effect of a finite plate width as follows:

K = �a�� a M (Eq 2)

The coefficient M is a modification factor for K-estimation
associated with the finite width effect and is given by the
following modified secant formula[12]:

M = �1 − 0.1�a�L�2 + 0.96�a�L�4� �sec�� a�L� (Eq 3)

The equivalent crack length l implies the length of a virtual
crack that provides an identical stress intensity factor in an
infinite plate subjected to the uniform applied stress �a.

2.2 Modeling of Microstructural Morphology

A material model, which consists of grains with different
sizes, is used in the current study. In using a finite element
method (FEM), the microstructure is modeled as a two-
dimensional area by adopting a regular square element as an

initial configuration for the individual grain. As illustrated in
Fig. 1(a), the mean grain size do is defined as the diagonal of
the original regular square element. The original shape of each
equilateral square is randomly deformed to represent a more
realistic microstructure as follows: four nodes of a square el-
ement are moved from their initial positions within a limited
circle by using a series of pseudo-uniform random numbers, so
that the resultant shape of the square element should be kept
convex. For this restriction, the process of making one mesh is
repeated five times at most.

In the simulation, the 20 different configurations for FEM
mesh are prepared for five kinds of dimensionless crack length
� ≡ l/do � 0.5, 1, 2, 5, and 10. This implies that 20 samples
with different microstructure configurations are simulated for
each crack length.

2.3 Modeling of Crystallographic Direction in Grain

Individual grains in a polycrystalline assembly show differ-
ent deformation responses because they have distinct crystal-
lographic directions for the principal axial stress direction in a
given stress state. To simplify the analytical model, however, a
cubic crystal structure is considered as the simplest type of
constituent grain, though ceramic materials often have more
complex crystal structures (e.g., hexagonal and tetragonal
structures). As another simplification, the crystalline anisotro-
py in the mechanical response is replaced by the difference in
grain rigidity, and the rigidity of individual grains (i.e., ele-
ments) is also represented by the values of Young’s modulus,
which are randomly assigned to elements in an FEM analysis.

The elastic constants are assumed to be those for magnesia
(MgO) as a model material in this analysis. MgO is a typical
ceramic material with a cubic crystal system. Young’s modulus
E in each crystallographic direction of MgO[13] is as follows:
248.2 GPa in <1 0 0>, 316.4 GPa in <1 1 0>, and 348.9 GPa
in <1 1 1>. The mean value Eo � 298.6 GPa is obtained from
the average of the maximum value 348.9 GPa and the mini-
mum value 248.2 GPa of the material. The maximum and the
minimum value of Young’s modulus as well as their mean
value are adopted for the grain rigidity in the simulation. The
three Young’s moduli are assigned at random in each mesh
element modeled as a grain on condition that the Young’s
modulus of the grain at the crack tip, Etip, is fixed as one of the
three Young’s moduli. Independently of Young’s modulus,
however, the Poisson ratio � is assumed to be the constant
value of 0.17 in the bulk material.

3. Analysis of Influence of Grain Characteristics
on Crack Tip Stress

The influences due to the difference of grain rigidity and
size on the crack tip stress are analyzed by using the finite
element model, which represents more actual microstructures.

3.1 Effect of Grain Rigidity

The crack tip stress is defined as the calculated stress at the
center of the grain, which is located at the crack tip. In this
analysis, seven grains surrounding the grain at the crack tip are
especially focused on, in consideration of the symmetry con-

Fig. 1 Center-cracked plate model used in finite element analysis
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cerning the crack. Also, the influences due to the difference in
the grain rigidity on the crack tip stress are investigated for
each crack length. The Young’s moduli of the seven grains are
respectively described as E1, E2, E3, E4, E5, E6, and E7, corre-
sponding to their positions as depicted in Fig. 2. In addition, the
following rigidity parameters are introduced using the rigidities
of the grains existing at the symmetric positions with respect to
the crack line:

S12 =
�E1 + E2��2

Eo
(Eq 4a)

S34 =
�E3 + E4��2

Eo
(Eq 4b)

S56 =
�E5 + E6��2

Eo
(Eq 4c)

SS7 =
E7

Eo
(Eq 4d)

ST7 =
��

n=1

7

En��7

Eo
(Eq 4e)

The above parameters are normalized by the mean Young’s
modulus Eo � 298.6 GPa.

Figure 3 presents the result for � � 1 and Etip � Eo as one
of analyzed examples. In the figure, the crack tip stress � is
normalized by a stress parameter �a�

1/2. Figure 3(a) shows the
relation of the normalized crack tip stress to the rigidity pa-
rameters S12 and S34, while the normalized crack tip stress is
correlated with the other rigidity parameters S56, SS7 and ST7 in
Fig. 3(b). As seen in Fig. 3(a), the crack tip stress increases
with decreasing the grain rigidity parameter S12 (see the broken
line) and/or increasing the grain rigidity parameter S34 (see the
dotted line). However, no good correlation is recognized in the
relations with the other three parameters S56, SS7, and ST7.

The lower rigidity of grains #1 and #2 makes the crack
opening easier, while the higher rigidity of grains #3 and #4
restricts the deformation of the grain at the crack tip. Therefore,
the crack tip stress is considered to become greater for the
smaller S12 and the larger S34. Since the parameters S12 and S34

show an opposite correlation with the crack tip stress, a specific
rigidity parameter S12/S34 is expected to better reflect both
rigidity effects of the grains around the crack tip. The relation
of the crack tip stress to the specific rigidity parameter is plot-

ted in Fig. 4, which indicates a clearer negative interrelation-
ship between them.

Similar results are also obtained for the other crack length of
� � 0.5, 2, 5, and 10, and for other values of the crack tip
rigidity Etip. Consequently, it may be concluded that the spe-
cific rigidity parameter S12/S34 is a dominant parameter repre-
senting the grain rigidity effect on the crack tip stress.

3.2 Effect of Grain Size

The relation between the grain size and the crack tip stress
is examined in this section. In this analysis, two definitions are
considered for the grain size: one is the grain length projected
onto the crack line, and another is the square root of the grain
area A. No remarkable difference has been found in analyzed
results using the two grain size parameters. In the following,
therefore, the analyzed results are shown for the grain size
defined by using the grain area.

Fig. 2 Numbering of grains around crack tip

Fig. 3 Relation between normalized stress and normalized rigidity:
(a) correlations with parameters S12 and S34; (b) correlations with
parameters S56, SS7, and ST7
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A normalized grain size parameter of the grain at the crack
tip is defined by:

Dtip =
�Atip

�Aorg

(Eq 5)

In Eq 5, Atip is the area of the grain at the crack tip, and Aorg is
the area of the element in an original mesh before the initial
mesh is deformed. The grain size effect on the crack tip stress
is also investigated with respect to grains surrounding the crack
tip. Similar to the examination on the grain rigidity effect, the
areas of the seven grains around the crack tip are considered.
The grain areas are denoted by A1, A2, A3, A4, A5, A6, and A7,
respectively, corresponding to their positions as shown in Fig.
2. Other grain size parameters D with subscripts are defined as
follows:

D12 =
��A1 + �A2��2

�Aorg

(Eq 6a)

D34 =
��A3 + �A4��2

�Aorg

(Eq 6b)

D56 =
��A5 + �A6��2

�Aorg

(Eq 6c)

DS7 =
�A7

�Aorg

(Eq 6d)

DT7 =
��

n=1

7

�An��7

�Aorg

(Eq 6e)

Figure 5 presents the result for � � 1 and Etip � Eo as one of
the analyzed examples. The normalized crack tip stress is cor-
related with the grain size parameters Dtip, D12, and D34 in Fig.

5(a), and also D56, DS7, and DT7 in Fig. 5(b). As indicated in
Fig. 5, any grain size parameter has no significant interrelation
with the crack tip stress. Similar results are also found for the
other crack length of � � 0.5, 2, 5, and 10, and for other values
of the crack tip rigidity Etip.

Therefore, note that the grain size of any grain at and around
the crack tip does not have a strong influence on the crack tip
stress, especially compared with the effect of the grain rigidity.

4. Microstructural Modification Factor of Stress
Intensity Factor for Crack of Microstructure
Order

4.1 Definition of Microstructural Modification Factor

Using the polar coordinate system (r, �) with its origin at the
crack tip, the distribution of stress �y in the direction vertical to
the crack is expressed as the following stress singularity form:

Fig. 4 Normalized stress correlated with specific rigidity parameter

Fig. 5 Relation between normalized stress and normalized grain size:
(a) correlations with parameters Dtip, D12, and D34; (b) correlations
with parameters D56, DS7, and DT7

186—Volume 12(2) April 2003 Journal of Materials Engineering and Performance



�y,SIF =
K

�2�r
cos

�

2 �1 + sin
�

2
sin

3�

2 � (Eq 7)

where r is the distance from the crack tip and � is the angle
measured from the crack line counterclockwise (Fig. 1). If the
stress intensity factor is used for the fracture problem associ-
ated with the crack of the microstructure order, a modification
is required to evaluate the stress intensity factor by using a new
modification factor fM to reflect the microstructural effect. In
this case, a modified stress intensity factor is expressed as:

K = �a�� l fM (Eq 8)

where the equivalent crack length l defined in Eq 1 is used. The
factor fM is called the microstructural modification factor in the
following. When the stress �y,FEM in the element at the crack
tip is given as the crack tip stress obtained by the aforemen-
tioned FEM analysis, the microstructural modification factor
fM is defined by the following equation:

fM =
�y, FEM

�y,SIF
(Eq 9)

The value of �y,SIF is uniquely determined for a given crack
length by setting � � 0 and r � do/2 in Eq 7 for the present
model as depicted in Fig. 1(a). On the other hand, even for the
same crack length, the crack tip stress �y,FEM changes due to
the variation in modeled microstructure configuration with dif-
ferent combinations of grain rigidity and size. Consequently,
the microstructural modification factor fM may also have dis-
tinct values even though the crack length is given.

4.2 Distribution Characteristics of Microstructural
Modification Factor

The distribution characteristics of the microstructural modi-
fication factor fM defined in the previous section is investigated
using the Weibull distribution function:

F� fM� = 1 − exp� − �fM − �

� ��� (Eq 10)

where F( fM) is the cumulative probability of fM, and �, �, and
� are the shape, scale, and location parameters, respectively.

Figure 6 shows the distribution of fM plotted on a Weibull
probability paper. The straight lines in the figure represent the
regression lines when the fM distributions are fitted to the two-
parameter Weibull distribution functions set as � � 0 in Eq 10.
As seen in Fig. 6, the fM distribution for a longer crack shifts
toward a lower side. No significant difference is seen between
the fM distributions in the cases of � � 5 and � � 10. This
suggests an asymptotic behavior of the fM distribution to a
specific distribution for the crack length, which is long enough.
In Table 1, the shape and scale parameters in the fitted Weibull
distribution function are summarized. Table 1 shows that the
shape parameter is almost the same independently of the crack
length. This implies that the relative scatter of the fM value
hardly varies as the crack length is changed.

5. Strength Distribution Characteristics Including
Microstructural Effects

5.1 Fracture Criterion for Small Crack

The brittle fracture criterion based on the stress intensity
factor K is ordinarily expressed by

K = KIC (Eq 11)

where KIC is the plane-strain fracture toughness. However, for
the ceramic fracture initiated from an inherent flaw of the mi-
crostructure size, the fracture criterion should be modified by
using the microstructural modification factor fM as follows:

KfM
= KIC (Eq 12)

In addition, it is recognized that the crack growth resistance KC

in ceramic materials changes mainly due to the grain bridging,
which depends on the crack length. Therefore, the criterion of
Eq 12 should be further replaced with

KfM
= KC (Eq 13)

The concept of R-curve is introduced in the analysis, and its
detail is described in the next section.

5.2 R-Curve Model to Be Used in Simulation

In most engineering ceramics, the surface free energy in a
single crystal is generally smaller than the effective surface

Fig. 6 Distribution of fM-value plotted on Weibull probability paper

Table 1 Parameters in Two-Parameter Weibull
Function Fitted to fM Distribution

� = l/do Shape Parameter � Scale Parameter �

0.5 25.0 1.50
1 21.5 1.23
2 18.4 1.07
5 20.6 0.998

10 19.9 0.975
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energy required for unstable cracking in polycrystalline mate-
rials.[14-16] The higher energy in a polycrystal is attributed to a
much rougher fracture surface compared with that in a single
crystal, because the fracture surface area is larger due to a
rougher cracking path. In this situation, R-curve behavior is
expected to appear.

To express the grain bridging effect in ceramics, particu-
larly, Mai et al.[9,10] proposed R-curve formulations. However,
when the R-curve expression proposed by Mai and Lawn is
applied, an anomalous behavior is observed[11] in the crack
length versus strength relation as follows. The strength de-
creases steadily with increasing crack length in the region of �
< 1, increases for a time as � exceeds unity, and decreases again
after the increase in strength. This result is suggested to be
caused by using the R-curve formulation proposed by Mai and
Lawn.[9] To solve the problem and to simplify the formulation,
a new R-curve expression of an exponential type has been
proposed elsewhere.[11] In this work, the exponential type R-
curve as described below is adopted for the fracture criterion:

KC = KCO = KIC �1 − RO exp�−C�� for � 	 1 (Eq 14a)

KC = KIC �1 − RO exp�−C�n�� for � 
 1 (Eq 14b)

where KCO, RO, C, and n are constants. Defining RCO ≡ KCO/
KIC, the following relation is obtained:

RO = �1 − RCO� exp�C� (Eq 15)

The above expression is more easily dealt with in its applica-
tion compared with the Mai-Lawn model. In another work,[11]

it is found that the parameters C � 0.8, n � 0.5, and RCO �
0.61 are appropriate for Eq 14 as the approximation for the
Mai-Lawn model.

5.3 Estimation of Strength Distribution

In this section, the strength distribution in ceramics is esti-
mated based on the aforementioned discussions. Using the
equivalent crack length l, the microstructural modification fac-
tor fM, and the R-curve concept, the fracture criterion given by
Eq 13 is rewritten as the following criterion including the frac-
ture strength �f:

��f��l� fM = KC (Eq 16)

Equation 16 yields the expression for �f as follows:

�f =
KC

�� l fM

(Eq 17)

It can be understood that the strength �f shows dispersion by
the variation of the microstructural modification factor fM.
Therefore, if the variation of the microstructural modification
factor fM is specified, the strength distribution in ceramics can
be evaluated. The distribution of fM has been derived by stress
analysis using finite element analysis and can be approximated
by the two-parameter Weibull distribution function with � � 0
in Eq 10. Using the cumulative probability F as a random
variable, Eq 10 gives fM as a function of F as follows:

fM = exp�1

�
ln�−ln�1 − F�	 + ln �� (Eq 18)

The strength distribution can be evaluated by Eq 17 with Eq 18.
In addition, Eq 14 of the R-curve expression is substituted into
KC in Eq 17, and the normalized fracture strength �f � �f /
[KIC /(� do)1/2] is obtained by:

�f =
1 − RO exp�−C�

�� exp�ln�−ln�1 − F�	�� + ln ��
for � 	 1 (Eq 19a)

�f =
1 − RO exp�−C�n�

�� exp�ln�−ln�1 − F�	�� + ln ��
for � 
 1 (Eq 19b)

In this estimation, the upper and lower bounds of the normal-
ized strength are respectively calculated by substituting F �
0.999 and F � 0.001 into Eq 19 for five discrete values of the
normalized crack length �. Scatter bands of the normalized
strength obtained by the calculation are indicated with the solid
curves in Fig. 7. For reference, experimental results [2,5,17,18]

for several ceramic materials (Table 2) are pooled, and also
plotted with circle marks in Fig. 7. The estimated scatter band
expresses the central trend of dispersed experimental results.
Although the calculated dispersion of strength is narrower
compared with the scatter in experiments, note that experimen-

Table 2 Mechanical Properties of Ceramic Materials as Reference Data

Material
Bulk Density

�, Mg/m3
Young’s Modulus

E-GPa
Mean Grain Size

do-µm
Fracture Toughness

KIC, MPa � m1/2
Mean Strength

�f , MPa

Alumina, AL-1 3.93 380 5.3 4.4 381 (a)
Alumina, 96% 3.7 349 10 3.6 414 (b)
Alumina, 92% 3.6 290 20 3.2 302 (b)
Silicon nitride, EC-141 3.23 320 1.6 6.0 1060 (a)
Silicon nitride, EC-1211 3.26 330 5.0 5.7 834 (b)

800 (c)
Sialon 3.22 294 2.1 5.8 788 (c)
Zirconia, PSZ 6.0 218 1.0 6.0 1126 (b)

Loading mode in strength test: (a) four-point bending, (b) three-point bending, (c) ring compression
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tal results are pooled for several ceramics with different me-
chanical properties, and the R-curve property may have a scat-
ter, too.

6. Summary

A numerical analysis of the stress distribution around the
crack tip was conducted by using an FEM, in which each
element was regarded as one grain constituting a material mi-
crostructure. In the FEM model, the anisotropy appearing in
individual grains with distinct crystallographic directions was
replaced with the variation of the grain rigidity, and the differ-
ence of grain size was dealt with by deforming the shape and
size of each original square element in an initially divided
mesh.

As for the grain rigidity, the crack tip stress was well cor-
related with the parameters using Young’s moduli of the grains
just behind the crack tip and also the grains above and below
the grain at the crack tip. It was found that the crack tip stress
was higher for a lower rigidity of the grains just behind the
crack tip and/or for a higher rigidity of the grains above and
below the grain at the crack tip. However, the size of grains at
and around the crack tip hardly affected the crack tip stress
compared with the effect of the grain rigidity

A modification factor for the stress intensity factor K was
proposed based on the numerical results to take account of the
microstructural influences expected in ceramics. In this study,
the microstructural modification factor fM was defined as the
ratio of the stress in the crack tip element, which was calculated
by the FEM analysis, divided by the K-based stress. The sta-
tistical properties of obtained fM values were investigated in the
Weibull plots. The fM distributions were fitted to the two-
parameter Weibull distribution function. The fM distribution for
a longer crack was found to shift toward a lower side. It was
also suggested that an asymptotic behavior of the fM distribu-
tion to a specific distribution appeared with increasing the
crack length. On the other hand, the scatter of the fM value was
almost the same for different crack lengths.

In the strength analysis, the fracture criterion was modified
by using the microstructural modification factor fM for the ce-
ramic fracture originating from an inherent flaw in microstruc-
ture size. In addition, by including the R-curve effect in the
criterion, the strength distribution characteristics were simu-
lated to clarify the influences of microstructural factors on the
ceramic strength. To express the grain bridging effect in ce-
ramics, the R-curve expression of an exponential type was
applied in the simulation. It was found that the estimated scat-
ter band in the relation between the strength and the crack
length represented the central trend of dispersed experimental
results.
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